3 research outputs found

    Solving Many-Objective Car Sequencing Problems on Two-Sided Assembly Lines Using an Adaptive Differential Evolutionary Algorithm

    Get PDF
    The car sequencing problem (CSP) is addressed in this paper. The original environment of the CSP is modified to reflect real practices in the automotive industry by replacing the use of single-sided straight assembly lines with two-sided assembly lines. As a result, the problem becomes more complex caused by many additional constraints to be considered. Six objectives (i.e. many objectives) are optimised simultaneously including minimising the number of colour changes, minimising utility work, minimising total idle time, minimising the total number of ratio constraint violations and minimising total production rate variation. The algorithm namely adaptive multi-objective evolutionary algorithm based on decomposition hybridised with differential evolution algorithm (AMOEA/D-DE) is developed to tackle this problem. The performances in Pareto sense of AMOEA/D-DE are compared with COIN-E, MODE, MODE/D and MOEA/D. The results indicate that AMOEA/D-DE outperforms the others in terms of convergence-related metrics

    āļāļēāļĢāļˆāļąāļ”āļĨāļģāļ”āļąāļšāļāļēāļĢāļœāļĨāļīāļ•āļĢāļ–āļĒāļ™āļ•āđŒāđāļšāļšāļĄāļēāļāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļšāļ™āļŠāļēāļĒāļāļēāļĢāļ›āļĢāļ°āļāļ­āļšāļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļœāļŠāļĄāđāļšāļšāļŠāļ­āļ‡āļ”āđ‰āļēāļ™Many-Objective Car Sequencing Problem on Mixed-model Two-sided Assembly Lines

    No full text
    āļ§āļīāļ˜āļĩāļāļēāļĢāđ€āļŠāļīāļ‡āļ§āļīāļ§āļąāļ’āļ™āļēāļāļēāļĢāđāļšāļšāļŦāļĨāļēāļĒāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ‚āļ”āļĒāļĒāļķāļ”āļŦāļĨāļąāļāļāļēāļĢāļˆāļģāđāļ™āļ (A Multi-Objective Evolutionary Algorithm based on Decomposition; MOEA/D) āđ€āļ›āđ‡āļ™āđ€āļĄāļ•āļēāļŪāļīāļ§āļĢāļīāļŠāļ•āļīāļāđ€āļŠāļīāļ‡āļ§āļīāļ§āļąāļ’āļ™āļēāļāļēāļĢāļ—āļĩāđˆāđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļžāļąāļ’āļ™āļēāļĄāļēāđ€āļžāļ·āđˆāļ­āđāļāđ‰āļ›āļąāļāļŦāļēāđāļšāļšāļĄāļēāļāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ (Many-Objective Optimization Problems; MaOPs) āđ‚āļ”āļĒāļĄāļĩāđāļ™āļ§āļ„āļīāļ”āđƒāļ™āļāļēāļĢāļ„āđ‰āļ™āļŦāļēāļ„āļģāļ•āļ­āļšāļ”āđ‰āļ§āļĒāļāļēāļĢāļˆāļģāđāļ™āļāļ›āļąāļāļŦāļēāļ­āļ­āļāđ€āļ›āđ‡āļ™āļ›āļąāļāļŦāļēāļĒāđˆāļ­āļĒāđ€āļžāļ·āđˆāļ­āļŦāļēāļ„āļģāļ•āļ­āļšāļ—āļĩāđˆāļ”āļĩāļ—āļĩāđˆāļŠāļļāļ”āļ‚āļ­āļ‡āļ›āļąāļāļŦāļēāļĒāđˆāļ­āļĒāļ™āļąāđ‰āļ™āđ† āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰ āļˆāļķāļ‡āđ€āļŠāļ™āļ­ MOEA/D āļĄāļēāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļāļąāļšāļ§āļīāļ˜āļĩāļāļēāļĢāļ§āļīāļ§āļąāļ’āļ™āļēāļāļēāļĢāđ‚āļ”āļĒāđƒāļŠāđ‰āļœāļĨāļ•āđˆāļēāļ‡āđāļšāļšāļŦāļĨāļēāļĒāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ (Multi-Objective Differential Evolution Algorithm; MODE) āđƒāļ™āļāļēāļĢāđāļāđ‰āļ›āļąāļāļŦāļēāļāļēāļĢāļˆāļąāļ”āļĨāļģāļ”āļąāļšāļāļēāļĢāļœāļĨāļīāļ•āļĢāļ–āļĒāļ™āļ•āđŒāđāļšāļšāļĄāļēāļāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļšāļ™āļŠāļēāļĒāļāļēāļĢāļāļēāļĢāļ›āļĢāļ°āļāļ­āļšāļŠāļ­āļ‡āļ”āđ‰āļēāļ™ āļ‹āļķāđˆāļ‡āļ–āļđāļāļˆāļąāļ”āđ€āļ›āđ‡āļ™āļ›āļąāļāļŦāļē MaOPs āđāļĨāļ°āļ›āļąāļāļŦāļēāļ›āļĢāļ°āđ€āļ āļ—āđ€āļ­āđ‡āļ™āļžāļĩāļĒāļēāļ (Non-deterministic Polynomial Hard; NP-Hard) āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļĄāļĩāļ„āļ§āļēāļĄāļ‹āļąāļšāļ‹āđ‰āļ­āļ™āđāļĨāļ°āļˆāļģāļ™āļ§āļ™āļ„āļģāļ•āļ­āļšāļ—āļĩāđˆāļĄāļēāļ āđ‚āļ”āļĒāļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļ—āļĩāđˆāļ–āļđāļāļ›āļĢāļ°āđ€āļĄāļīāļ™āļžāļĢāđ‰āļ­āļĄāļāļąāļ™ 5 āļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒ āđ„āļ”āđ‰āđāļāđˆ āļˆāļģāļ™āļ§āļ™āļ„āļĢāļąāđ‰āļ‡āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļŠāļĩāļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ” āļˆāļģāļ™āļ§āļ™āļĢāļ–āļĒāļ™āļ•āđŒāļ—āļĩāđˆāļĨāļ°āđ€āļĄāļīāļ”āļĢāļ§āļĄāļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ” āļ›āļĢāļīāļĄāļēāļ“āļ‡āļēāļ™āļ—āļĩāđˆāļ—āļģāđ„āļĄāđˆāđ€āļŠāļĢāđ‡āļˆāđƒāļ™āļāļēāļĢāļœāļĨāļīāļ•āļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ” āđ€āļ§āļĨāļēāļĢāļ­āļ„āļ­āļĒāļ‡āļēāļ™āļĢāļ§āļĄāđƒāļ™āļāļēāļĢāļœāļĨāļīāļ•āļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ” āđāļĨāļ°āļ„āļ§āļēāļĄāđāļ›āļĢāļœāļąāļ™āļĢāļ§āļĄāļ‚āļ­āļ‡āļŠāļąāļ”āļŠāđˆāļ§āļ™āļāļēāļĢāļœāļĨāļīāļ•āļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ” āļ‹āļķāđˆāļ‡āļˆāļēāļāļāļēāļĢāļ—āļģāļĨāļ­āļ‡āļžāļšāļ§āđˆāļē MOEA/D āļĄāļĩāļŠāļĄāļĢāļĢāļ–āļ™āļ°āļ”āđ‰āļēāļ™āļāļēāļĢāļĨāļđāđˆāđ€āļ‚āđ‰āļēāļŠāļđāđˆāļ„āļģāļ•āļ­āļšāļ—āļĩāđˆāđāļ—āđ‰āļˆāļĢāļīāļ‡āđāļĨāļ°āđ€āļ§āļĨāļēāļ—āļĩāđˆāđƒāļŠāđ‰āļ”āļĩāļāļ§āđˆāļē MODEA Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) is an evolutionary metaheuristic which has been developed to solve Many-Objective Optimization Problems (MaOPs). The concept of searching for answers is to decompose the original problem into subproblems for finding the optimal solution of each subproblem. This study proposes a MOEA/D compared with a Multi-Objective Differential Evolution algorithm (MODE) in order to solve many-objective car sequencing problem on twosided assembly lines which is classified as a MaOPs and be non-deterministic polynomial hard problem (NP-Hard problem) due to complexity and a large number of solutions. Five objectives were simultaneously evaluated, including the minimal number of color changes, of vehicle violations, along with the minimum amount of unfinished production, of total idle time of the line, and of total variation in rate of production. The experiments showed that MOEA/D has better aspects of convergence performance and time consumption than MODE counterpart
    corecore